Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Observations from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) were used to evaluate the Coupled Arctic Forecast System (CAFS) model’s ability to simulate the atmospheric boundary layer (ABL) structure in the central Arctic. MOSAiC observations of the lower atmosphere from radiosondes, downwelling longwave radiation (LWD) from a pyranometer, and near-surface wind conditions from a meteorological tower were compared to 6-hourly CAFS output. A self-organizing map (SOM) analysis reveals that CAFS reproduces the range of stability structures identified by the SOM trained with MOSAiC observations of virtual potential temperature (θv) profiles, but not necessarily with the correct frequency or at the correct time. Additionally, the wind speed profiles corresponding to a particular θv profile are not consistent between CAFS and the observations. When categorizing profiles by static stability, it was revealed that CAFS simulates all observed stability regimes, but overrepresents the frequency of near-surface strong stability, and underrepresents the frequency of strong stability between the top of the ABL and 1 km. The 10 m wind speeds corresponding to each stability regime consistently have larger values in CAFS versus observed, and this offset increases with decreasing stability. Whether LWD is over or underestimated in CAFS is dependent on stability regime. Both variables are most greatly overestimated in spring, leading to the largest near-surface θv bias, and the greatest underrepresentation of strong stability in spring. The results of this article serve to highlight the positive aspects of CAFS for representing the ABL and reveal impacts of misrepresentations of physical processes dictating energy, moisture, and momentum transfer in the lower troposphere on the simulation of central Arctic ABL structure and stability. This highlights potential areas for improvement in CAFS and other numerical weather prediction models. The SOM-based analysis especially provides a unique opportunity for process-based model evaluation.more » « less
-
During the Arctic winter, the conductive heat flux through the sea ice and snow balances the radiative and turbulent heat fluxes at the surface. Snow on sea ice is a thermal insulator that reduces the magnitude of the conductive flux. The thermal conductivity of snow, that is, how readily energy is conducted, is known to vary significantly in time and space from observations, but most forecast and climate models use a constant value. This work begins with a demonstration of the importance of snow thermal conductivity in a regional coupled forecast model. Varying snow thermal conductivity impacts the magnitudes of all surface fluxes, not just conduction, and their responses to atmospheric forcing. Given the importance of snow thermal conductivity in models, we use observations from sea ice mass balance buoys installed during the Multidisciplinary drifting Observatory for the Study of Arctic Climate expedition to derive the profiles of thermal conductivity, density, and conductive flux. From 13 sites, median snow thermal conductivity ranges from 0.33 W m−1 K−1 to 0.47 W m−1 K−1 with a median from all data of 0.39 W m−1 K−1 from October to February. In terms of surface energy budget closure, estimated conductive fluxes are generally smaller than the net atmospheric flux by as much as 20 W m−2, but the average residual during winter is −6 W m−2, which is within the uncertainties. The spatial variability of conductive heat flux is highest during clear and cold time periods. Higher surface temperature, which often occurs during cloudy conditions, and thicker snowpacks reduce temporal and spatial variability. These relationships are compared between observations and the coupled forecast model, emphasizing both the importance and challenge of describing thermodynamic parameters of snow cover for modeling the Arctic as a coupled system.more » « less
-
This study evaluates the simulation of wintertime (15 October, 2019, to 15 March, 2020) statistics of the central Arctic near-surface atmosphere and surface energy budget observed during the MOSAiC campaign with short-term forecasts from 7 state-of-the-art operational and experimental forecast systems. Five of these systems are fully coupled ocean-sea ice-atmosphere models. Forecast systems need to simultaneously simulate the impact of radiative effects, turbulence, and precipitation processes on the surface energy budget and near-surface atmospheric conditions in order to produce useful forecasts of the Arctic system. This study focuses on processes unique to the Arctic, such as, the representation of liquid-bearing clouds at cold temperatures and the representation of a persistent stable boundary layer. It is found that contemporary models still struggle to maintain liquid water in clouds at cold temperatures. Given the simple balance between net longwave radiation, sensible heat flux, and conductive ground flux in the wintertime Arctic surface energy balance, a bias in one of these components manifests as a compensating bias in other terms. This study highlights the different manifestations of model bias and the potential implications on other terms. Three general types of challenges are found within the models evaluated: representing the radiative impact of clouds, representing the interaction of atmospheric heat fluxes with sub-surface fluxes (i.e., snow and ice properties), and representing the relationship between stability and turbulent heat fluxes.more » « less
-
Abstract The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) was a yearlong expedition supported by the icebreakerR/V Polarstern, following the Transpolar Drift from October 2019 to October 2020. The campaign documented an annual cycle of physical, biological, and chemical processes impacting the atmosphere-ice-ocean system. Of central importance were measurements of the thermodynamic and dynamic evolution of the sea ice. A multi-agency international team led by the University of Colorado/CIRES and NOAA-PSL observed meteorology and surface-atmosphere energy exchanges, including radiation; turbulent momentum flux; turbulent latent and sensible heat flux; and snow conductive flux. There were four stations on the ice, a 10 m micrometeorological tower paired with a 23/30 m mast and radiation station and three autonomous Atmospheric Surface Flux Stations. Collectively, the four stations acquired ~928 days of data. This manuscript documents the acquisition and post-processing of those measurements and provides a guide for researchers to access and use the data products.more » « less
-
Central Arctic properties and processes are important to the regional and global coupled climate system. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Distributed Network (DN) of autonomous ice-tethered systems aimed to bridge gaps in our understanding of temporal and spatial scales, in particular with respect to the resolution of Earth system models. By characterizing variability around local measurements made at a Central Observatory, the DN covers both the coupled system interactions involving the ocean-ice-atmosphere interfaces as well as three-dimensional processes in the ocean, sea ice, and atmosphere. The more than 200 autonomous instruments (“buoys”) were of varying complexity and set up at different sites mostly within 50 km of the Central Observatory. During an exemplary midwinter month, the DN observations captured the spatial variability of atmospheric processes on sub-monthly time scales, but less so for monthly means. They show significant variability in snow depth and ice thickness, and provide a temporally and spatially resolved characterization of ice motion and deformation, showing coherency at the DN scale but less at smaller spatial scales. Ocean data show the background gradient across the DN as well as spatially dependent time variability due to local mixed layer sub-mesoscale and mesoscale processes, influenced by a variable ice cover. The second case (May–June 2020) illustrates the utility of the DN during the absence of manually obtained data by providing continuity of physical and biological observations during this key transitional period. We show examples of synergies between the extensive MOSAiC remote sensing observations and numerical modeling, such as estimating the skill of ice drift forecasts and evaluating coupled system modeling. The MOSAiC DN has been proven to enable analysis of local to mesoscale processes in the coupled atmosphere-ice-ocean system and has the potential to improve model parameterizations of important, unresolved processes in the future.more » « less
-
Abstract This study investigates cloud formation and transitions in cloud types at Summit, Greenland, during 16–22 September 2010, when a warm, moist air mass was advected to Greenland from lower latitudes. During this period there was a sharp transition between high ice clouds and the formation of a lower stratocumulus deck at Summit. A regional mesoscale model is used to investigate the air masses that form these cloud systems. It is found that the high ice clouds form in originally warm, moist air masses that radiatively cool while being transported to Summit. A sensitivity study removing high ice clouds demonstrates that the primary impact of these clouds at Summit is to reduce cloud liquid water embedded within the ice cloud and water vapor in the boundary layer due to vapor deposition on snow. The mixed-phase stratocumulus clouds form at the base of cold, dry air masses advected from the northwest above 4 km. The net surface radiative fluxes during the stratocumulus period are at least 20 W m−2 larger than during the ice cloud period, indicating that, in seasons other than summer, cold, dry air masses advected to Summit above the boundary layer may radiatively warm the top of the Greenland Ice Sheet more effectively than warm, moist air masses advected from lower latitudes.more » « less
-
With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic.more » « less
An official website of the United States government

Full Text Available